

SACHVERSTÄNDIGEN-RING Dipl.-Ing. H.-U. Mücke GmbH

SACHVERSTÄNDIGEN-RING GmbH Gutenbergstraße 1 · 23611 Bad Schwartau Sachverständige gemäß § 18 BBodSchG, Asbestund Gefahrstoffsachverständige, Sicherheits- und Gesundheitsschutzkoordinatoren gemäß RAB 30 und DGUV Regel 101-004

Amt Bad Oldesloe-Land Der Amtsvorsteher Louise-Zietz-Straße 4 23843 Bad Oldesloe • Altlastenbegutachtung

Arbeitssicherheit
 Geotechnik

AsbestuntersuchungenFlächenrecycling

Schallgutachten

Gefahrstoffmessungen

Bauschadstoffkataster

Baugrunderkundungen

• Naturschutzgutachten

Tel.: 0451 / 2 14 59 · Fax: 0451 / 2 14 69 info@mueckegmbh.de · www.mueckegmbh.de

Niederlassung
Eckernförde
Marienthaler Straße 17
24340 Eckernförde
Tel.: 04351 / 73 51 04
eckernfoerde@mueckegmbh.de

Büro Hamburg Blomkamp 109 22549 Hamburg Tel.: 040 / 63 94 91 43 hamburg@ mueckegmbh.de

04.01.2023 pb2206 103.4/hd

PRÜFBERICHT Nr. 2206 103.4

Bauvorhaben: Erschließung Baugebiet B-Plan 7

Gemeinde Rümpel

Inhalt: Vordeklaration von Aushubmaterial gemäß

Länderarbeitsgemeinschaft Abfall (LAGA TR Boden)

Probenahmeort: Klinkener Weg/Wiesenstraße

23843 Rümpel

Probenmaterial: Mischprobe Oberboden (MP4)

Auftraggeber: Amt Bad Oldesloe Land

Der Amtsvorsteher Louise-Zietz-Straße 4 23843 Bad Oldesloe

Auftrag vom: 02.06.2022

Bewertung: ab Seite 5

Dieser Prüfbericht umfasst 6 Seiten und 1 Anlage.

Steuer-Nr.: 2 229 620 939 AG Lübeck

HRB 1442 BS

Geschäftsführer Dipl.-Ing. Hans-Ulrich Mücke Commerzbank AG IBAN: DE44 2308 0040 0308 9587 00 BIC: DRESDEFF230

1. AUFTRAG

Die SACHVERSTÄNDIGEN-RING DIPL.-ING. H.-U. MÜCKE GMBH wurde für die Erschließungsmaßnahme am 02.06.2022 vom Amt Bad Oldesloe-Land mit der orientierenden Baugrunduntersuchung und der Erstellung eines allgemeinen Baugrundgutachtens sowie der abfalltechnischen Bewertung von Bodenmaterial nach den Anforderungen der LAGA (TR Boden) und der Untersuchung einer Asphaltprobe auf polyzyklische aromatische Kohlenwasserstoffe (PAK) und den Phenolgehalt zur abfalltechnischen Bewertung beauftragt.

Der vorliegende Prüfbericht Nr. 2206 103.4 umfasst die Bewertung der Bodenvordeklaration gemäß der Bestimmungen der LAGA TR Boden ("Anforderungen an die stoffliche Verwertung von mineralischen Abfällen, Teil II: Technische Regeln für die Verwertung, 1.2 Bodenmaterial") im Untersuchungsbereich.

2. VERANLASSUNG

Die Gemeinde Rümpel plant die Erschließung eines Neubaugebietes nördlich des Klinkener Wegs in 23843 Rümpel. Im Rahmen der Erschließungsmaßnahme ist zu berücksichtigen, dass bei Aushubarbeiten (Baugruben, Kanal-/Leitungsgräben usw.) überschüssiges Bodenmaterial anfällt, welches zu verwerten bzw. bei Erfordernis fachgerecht zu entsorgen ist. Hierfür sind Untersuchungen auf mögliche Schadstoffbelastungen durchzuführen.

Zur abfalltechnischen Vordeklaration von Aushubmaterial wurden im Zuge der Untergrunderkundung aus den entnommenen Bodenproben des Deckhorizontes insgesamt zwei Bodenmischproben zusammengestellt und im akkreditierten Labor der Eurofins Umwelt Nord GmbH, Hamburg nach dem Parameterumfang der LAGA TR Boden chemisch analysiert und abfalltechnisch bewertet.

3. PROBENAHME

Die tiefenorientierte Entnahme der Bodenproben erfolgte am 26./27.10.2022 durch die Sachverständigen-Ring GmbH im Rahmen der Untergrunderkundung aus den Kleinrammbohrungen KRB01 bis KRB10. Die Lage der Bohransatzpunkte kann Abbildung 1 entnommen werden.

Aus insgesamt vier entnommenen Einzelproben der Kleinrammbohrungen KRB07 bis KRB10 wurde die Mischprobe MP4 zusammengestellt. Das Probenmaterial setzt sich im Wesentlichen aus humifizierten Fein- und Mittelsanden zusammen.

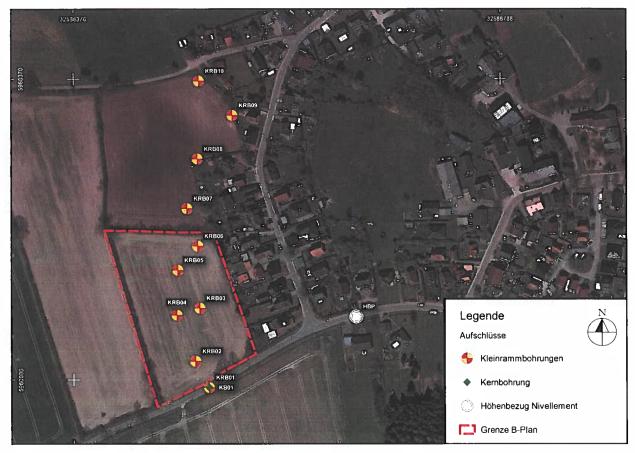


Abb. 1: Lage der Ansatzpunkte im Untersuchungsgebiet (Quelle: Google Satellite)

Die Mischprobe wurde zu gleichen Anteilen aus den nachfolgenden Einzelproben zusammengestellt:

Probe	Aufschluss	Proben-Nr.	Tiefenbereich [m]
	KRB07	07/1	0,0 bis 0,80
MP4	KRB08	08/1	0,0 bis 0,60
WIP4	KRB09 09/1	0,0 bis 0,50	
1 mars	KRB10	10/1	0,0 bis 0,60

Die Mischprobe MP4 wurde in zwei 0,5-Liter Braungläser abgefüllt, gasdicht verschlossen und gekühlt dem Labor der Eurofins Umwelt Nord GmbH in Hamburg überstellt. Im Labor wurde das Probenmaterial gemäß des Parameterumfangs der LAGA TR Boden, Tabellen II.1.2-2, II.1.2-3, II.1.2-4 und II.1.2-5 untersucht. Die Untersuchungsparameter sowie die angewandten Methoden sind dem Laborprüfbericht Nr. AR-22-XF-005192-01 zu entnehmen, der diesem Bericht als Anlage 1 beigefügt ist.

4. ERGEBNISSE DER DEKLARATIONSANALYSEN

In Tabelle 1 und Tabelle 2 sind die Laborergebnisse der Feststoff- und Eluatanalytik der Bodenmischprobe **MP4** den Zuordnungswerten der LAGA TR Boden (2004) gegenübergestellt.

Tabelle 1: Ergebnisse der Laboruntersuchungen und Zuordnung gemäß LAGA, TR Boden für den Feststoff der Mischproben MP4

	Einheit	MP4	Z0	Z0*	Z1.1	Z1.2	Z2
Zuordnung		Z2					
Arsen (As)	mg/kg TS	2,5	10	15	45	45	150
Blei (Pb)	mg/kg TS	10,0	40	140	210	210	700
Cadmium (Cd)	mg/kg TS	< 0,2	0,4	1	3	3	10
Chrom (Cr)	mg/kg TS	9,0	30	120	180	180	600
Kupfer (Cu)	mg/kg TS	6,0	20	80	120	120	400
Nickel (Ni)	mg/kg TS	5,0	15	100	150	150	500
Fhallium (Tl)	mg/kg TS	< 0,2	0,4	$0,7(1,0)^{2}$	2,1	2,1	7
Quecksilber (Hg)	mg/kg TS	< 0,07	0,1	1	1,5	1,5	5
Zink (Zn)	mg/kg TS	29,0	60	300	450	450	1500
Cyanide, gesamt	mg/kg TS	< 0,5			3	3	10
TOC	Ma% TS	1,6	$0,5(1,0)^{31}$	$0.5(1.0)^{3}$	1,5	1,5	5
EOX	mg/kg TS	< 1,0	1	l	3	3	10
Kohlenwasserstoffe C10-C22	mg/kg TS	< 40	100	200	300	300	1000
Kohlenwasserstoffe C10-C40	mg/kg TS	< 40		400	600	600	2000
Summe BTEX	mg/kg TS	(n.b.)	1	1	1	1	1
Summe LHKW (10 Parameter)	mg/kg TS	(n.b.)	1	1	1	1	1
Summe 6 DIN-PCB exkl. BG	mg/kg TS	(n.b.)	0,05	0,1	0,15	0,15	0,5
Benzo[a]pyren	mg/kg TS	< 0,05	0,3	0,6	0,9	0,9	3
Summe 16 EPA-PAK exkl.BG	mg/kg TS	(n.b.)	3	3	3 (9)1)	3 (9)1)	30

^{1):} Bodenmaterial mit PAK-Gehalten > 3 mg/kg und ≤ 9 mg/kg darf nur unter hydrogeologisch günstigen Bedingungen eingebaut werden;

²⁾: der Wert 0,7 mg/kg gilt für die Bodenarten Sand und Lehm/Schluff – für die Bodenart Lehm gilt der Wert 1,0 mg/kg;

^{3):} bei einem C:N-Verhältnis > 25 beträgt der Zuordnungswert 1 Masse-%; n.b.: nicht berechenbar, da alle untersuchten Einzelparameter < Nachweisgrenze.

Tabelle 2: Ergebnisse der Laboruntersuchungen und Zuordnung gemäß LAGA, TR Boden für das Eluat der Mischproben MP4

	Einheit	MP4	Z0	Z0*	Z1.1	Z1.2	Z2
Zuordnung		Z2	18				
pH-Wert	[-]	5,8	6,5 - 9,5	6,5 - 9,5	6,5 - 9,5	6 - 12	5,5 - 12
Leitfähigkeit bei 25°C	μS/cm	27	250	250	250	1500	2000
Chlorid (Cl)	mg/l	1,4	30	30	30	50	100
Sulfat (SO4)	mg/l	3,7	20	20	20	50	200
Cyanide, gesamt	μg/l	< 5,0	5	5	5	10	20
Arsen (As)	μg/l	2,0	14	14	14	20	60
Blei (Pb)	μg/l	< 1,0	40	40	40	80	200
Cadmium (Cd)	μg/l	< 0,3	1,5	1,5	1,5	3	6
Chrom (Cr)	μg/l	< 1,0	12,5	12,5	12,5	25	60
Kupfer (Cu)	μg/l	< 5,0	20	20	20	60	100
Nickel (Ni)	μg/l	2,0	15	15	15	20	70
Quecksilber (Hg)	μg/l	< 0,2	< 0,5	< 0,5	< 0,5	1	2
Zink (Zn)	μg/l	< 10,0	150	150	150	200	600
Phenolindex, wasserdampfflüchtig	μg/l	< 10,0	20	20	20	40	100

5. BEWERTUNG

Bei der Verwertung von Boden werden die technischen Regelungen der Länderarbeitsgemeinschaft Abfall: "Anforderungen an die stoffliche Verwertung von mineralischen Abfällen: Teil II: Technische Regeln für die Verwertung, 1.2 Bodenmaterial" (LAGA TR Boden, Stand 05.11.2004) herangezogen.

Für die abfalltechnische Deklaration und Verwertung des Materials werden in der LAGA TR Boden drei Einbauklassen auf Grundlage, der in Tabelle 1 bis 3 dargestellten Zuordnungskriterien definiert:

Einbauklasse 0: Zuordnungswert Z0/Z0*, uneingeschränkter Einbau, sofern Z0* au-

Berhalb wasserwirtschaftlich genutzter Gebiete eingebaut wird,

sonst Z0* zu Einbauklasse 1

Einbauklasse 1: Zuordnungswert Z1.1/Z1.2/Z1, eingeschränkter offener Einbau un-

ter Berücksichtigung bestimmter Nutzungseinschränkungen

Einbauklasse 2: Zuordnungswert Z2, eingeschränkter Einbau mit definierten techni-

schen Sicherungsmaßnahmen (Einbau-Obergrenze)

Zur Orientierung im Umgang mit den Aushubböden im Bereich der Ansatzpunkte KRB07 bis KRB10 können die Analyseergebnisse der nachstehenden Mischprobe **MP4** herangezogen werden.

Das Material der Probe MP4 erfüllt aufgrund des Gesamtanteils an organischem Kohlenstoff (TOC) von 1,6 Gew-% im Feststoff sowie des pH-Wertes von 5,8 das LAGA-Zuordnungskriterium Z2 und kann dementsprechend nach den Anforderungen der Einbauklasse 2 (eingeschränkter Einbau mit definierten technischen Sicherungsmaßnahmen) fachgerecht verwertet bzw. entsorgt werden. Der ermittelte TOC-Gehalt ist nicht auf gärfähige Bestandteile, wie z.B. Müllreste oder sonstige Abfallstoffe zurückzuführen.

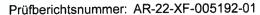
6. WEITERE VORGEHENSWEISE

Die vorliegende Untersuchung ist als abfalltechnische Vordeklaration zu verstehen und ersetzt <u>keine</u> qualifizierte Haufwerksbeprobung (z.B. gemäß LAGA PN 98) und Analyse nach dem Ausbau von Bodenmaterial.

Wir empfehlen, dass im Bereich geplanter Baumaßnahmen anfallende Aushubmaterial in separierten Haufwerken zur abschließenden Beprobung für eine Deklarationsanalytik und ggf. zur anschließenden fachgerechten Entsorgung bereitzustellen.

SACHVERSTÄNDIGEN-RING

Dipl.-Ing. H.-U. Mücke GmbH


Dipll-Ing. Hans-Ulrich Mücke

(Geschäftsführer)

Dipling Mucke Citizen

Hinrich Dibbern (Diplom-Geologe)

Anlagen: - Anlage 01: Laborprüfbericht Nr. AR-22-XF-005192-01

Seite 1 von 4

Eurofins Umwelt Nord GmbH - Lise-Meitner-Straße 1-7 - D-24223 Schwentinental

Sachverständigen-Ring Dipl.-Ing. H.-U. Mücke GmbH Gutenbergstraße 1B 23611 Bad Schwartau

Titel:

Prüfbericht zu Auftrag 32242790

Prüfberichtsnummer:

AR-22-XF-005192-01

Auftragsbezeichnung:

2206 103.4 / B-Plan_7_Gemeinde_Rümpel/hd

Anzahl Proben:

1

Probenart:

Boden

Probenehmer:

keine Angabe, Probe(n) wurde(n) an das Labor ausgehändigt

Probeneingangsdatum:

10.11.2022

Prüfzeitraum:

10.11.2022 - 18.11.2022

Die Prüfergebnisse beziehen sich ausschließlich auf die untersuchten Prüfgegenstände. Sofern die Probenahme nicht durch unser Labor oder in unserem Auftrag erfolgte, wird hierfür keine Gewähr übernommen. Die Ergebnisse beziehen sich in diesem Fall auf die Proben im Anlieferungszustand. Dieser Prüfbericht enthält eine qualifizierte elektronische Signatur und darf nur vollständig und unverändert weiterverbreitet werden. Auszüge oder Änderungen bedürfen in jedem Einzelfall der Genehmigung der EUROFINS UMWELT.

Es gelten die Allgemeinen Verkaufsbedingungen (AVB), sofern nicht andere Regelungen vereinbart sind. Die aktuellen AVB können Sie unter http://www.eurofins.de/umwelt/avb.aspx einsehen.

Anhänge:

XML_Export_AR-22-XF-005192-01.xml

Martin Jacobsen

Digital signiert, 18.11.2022

Prüfleiter

Maria Windeler Prüfleitung

Umwelt

				Probenbeze	MP 4	
			Methode	Probennum	322187628	
Parameter	Lab.	Akkr.		BG	Einheit	
Probenvorbereitung Feststo	ffe					
Probenmenge inkl. Verpackung	FR/f	F5	DIN 19747: 2009-07		kg	1,5
Fremdstoffe (Art)	FR/f	F5	DIN 19747: 2009-07			nein
remdstoffe (Menge)	FR/f	F5	DIN 19747: 2009-07		9	0,0
Siebrückstand > 10mm	FR/f	F5	DIN 19747: 2009-07			nein
Fremdstoffe (Anteil)	FR/f	F5	DIN 19747: 2009-07	0,1	%	< 0,1
Königswasseraufschluss	FR/f	F5	DIN EN 13657: 2003-01			Х
Physikalisch-chemische Ke	nngrö	ßen au	ıs der Originalsubs	tanz		
Trockenmasse	FR/f	F5	DIN EN 14346: 2007-03	0,1	Ma%	85,4
Anionen aus der Originalsul	bstan	z				
Cyanide, gesamt	FR/f	F5	DIN ISO 17380: 2013-10	0,5	mg/kg TS	< 0,5
Elemente aus dem Königsw	asser	aufsch	iluss nach DIN EN '	13657: 2003-	01#	
Arsen (As)	FR/f	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,8	mg/kg TS	2,5
Blei (Pb)	FR/f	F5	DIN EN ISO 17294-2 (E29): 2017-01	2	mg/kg TS	10
Cadmium (Cd)	FR/f	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,2	mg/kg TS	< 0,2
Chrom (Cr)	FR/f	F5	DIN EN ISO 17294-2 (E29): 2017-01	1	mg/kg TS	9
Kupfer (Cu)	FR/f	F5	DIN EN ISO 17294-2 (E29): 2017-01 DIN EN ISO 17294-2	1	mg/kg TS	6
Nickel (Ni)	FR/f	F5	(E29): 2017-01	1	mg/kg TS	5
Quecksilber (Hg)	FR/f	F5	DIN EN ISO 12846 (E12): 2012-08	0,07	mg/kg TS	< 0,07
Thallium (Ti)	FR/f	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,2	mg/kg TS	< 0,2
Zink (Zn)	FR/f	F5	DIN EN ISO 17294-2 (E29): 2017-01	1	mg/kg TS	29
Organische Summenparam	eter a	us der	Originalsubstanz			
тос	FR/f	F5	DIN EN 15936: 2012-11 (AN,L8: Ver.A; FG,F5: Ver.B)	0,1	Ma% TS	1,6
EOX	FR/f	F5	DIN 38414-17 (S17): 2017-01	1,0	mg/kg TS	< 1,0
Kohlenwasserstoffe C10-C22	FR/f	F5	DIN EN 14039: 2005-01/LAGA KW/04: 2019-09	40	mg/kg TS	< 40
Kohlenwasserstoffe C10-C40	FR/f	F5	DIN EN 14039: 2005-01/LAGA KW/04: 2019-09	40	mg/kg TS	< 40
BTEX und aromatische Koh	lenwa	assers	toffe aus der Origin	alsubstanz		
Benzol	FR/f	F5	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05
Toluoi	FR/f	F5	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05
Ethylbenzol	FR/f	F5	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05
m-/-p-Xylol	FR/f	F5	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05
o-Xylol	FR/f	F5	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05
Summe BTEX	FR/f	F5	DIN EN ISO 22155: 2016-07		mg/kg TS	(n. b.) 1)
	1					

Umwelt

				Probenbeze	eichnung	MP 4	
				Probennummer		322187628	
Parameter	Lab.	Akkr.	Methode	BG	Einheit		
HKW aus der Originalsubs	tanz				1		
Dichlormethan	FR/f	F5	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	
rans-1,2-Dichlorethen	FR/f	F5	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	
cis-1,2-Dichlorethen	FR/f	F5	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	
Chloroform (Trichlormethan)	FR/f	F5	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	
1,1,1-Trichlorethan	FR/f	F5	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	
Tetrachlormethan	FR/f	F5	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	
Trichlorethen	FR/f	F5	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	
Tetrachlorethen	FR/f	F5	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	
1,1-Dichlorethen	FR/f	F5	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	
1,2-Dichlorethan	FR/f	F5	DIN EN ISO 22155:	0,05	mg/kg TS	< 0,05	
Summe LHKW (10	FR/f	F5	2016-07 DIN EN ISO 22155: 2016-07	7,33	mg/kg TS	(n. b.) 1)	
Parameter)							
PAK aus der Originalsubsta	FR/f	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0.05	
Naphthalin		+	ļ	· · · · · ·	mg/kg TS	< 0.05	
Acenaphthylen	FR/f	F5	DIN ISO 18287: 2006-05			< 0,05	
Acenaphthen	FR/f	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS		
Fluoren	FR/f	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	
Phenanthren	FR/f	F5	DIN ISO 18287: 2006-05		mg/kg TS	< 0,05	
Anthracen	FR/f	F5	DIN ISO 18287: 2006-05	1	mg/kg TS	< 0,05	
Fluoranthen	FR/f	F5	DIN ISO 18287: 2006-05	<u> </u>	mg/kg TS	< 0,05	
Pyren	FR/f	F5	DIN ISO 18287: 2006-05		mg/kg TS	< 0,05	
Benzo[a]anthracen	FR/f	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	
Chrysen	FR/f	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	
Benzo[b]fluoranthen	FR/f	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	
Benzo[k]fluoranthen	FR/f	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	
Benzo[a]pyren	FR/f	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	
Indeno[1,2,3-cd]pyren	FR/f	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	
Dibenzo[a,h]anthracen	FR/f	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	
Benzo[ghi]perylen	FR/f	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	
Summe 16 EPA-PAK exkl. BG	FR/f	F5	DIN ISO 18287: 2006-05		mg/kg TS	(n. b.) 1)	
Summe 15 PAK ohne Naphthalin exkl. BG	FR/f	F5	DIN ISO 18287: 2006-05	;	mg/kg TS	(n. b.) 1)	
PCB aus der Originalsubst	anz						
PCB 28	FR/f	F5	DIN EN 15308: 2016-12	0,01	mg/kg TS	< 0,01	
PCB 52	FR/f	F5	DIN EN 15308: 2016-12	0,01	mg/kg TS	< 0,01	
PCB 101	FR/f	F5	DIN EN 15308: 2016-12	0,01	mg/kg TS	< 0,01	
PCB 153	FR/f	F5	DIN EN 15308: 2016-12	0,01	mg/kg TS	< 0,01	
PCB 138	FR/f	F5	DIN EN 15308: 2016-12	0,01	mg/kg TS	< 0,01	
PCB 180	FR/f	F5	DIN EN 15308: 2016-12	0,01	mg/kg TS	< 0,01	
Summe 6 DIN-PCB exkl. BG	FR/f	F5	DIN EN 15308: 2016-12		mg/kg TS	(n. b.) 1)	
PCB 118	FR/f	F5	DIN EN 15308: 2016-12	+	mg/kg TS	< 0,01	
Summe PCB (7)	FR/f	F5	DIN EN 15308: 2016-12		mg/kg TS	(n. b.) 1)	

Umwelt

				Probenbezei	MP 4	
				Probennum	322187628	
Parameter	rameter Lab. Akk		Methode	BG	Einheit	
Physchem. Kenngröße	n aus den	10:1-	Schütteleluat nach	DIN EN 1245	7-4: 2003-01	
pH-Wert	FR/f	F5	DIN EN ISO 10523 (C5): 2012-04			5,8
Temperatur pH-Wert	FR/f	F5	DIN 38404-4 (C4): 1976-12		°C	18,9
Leitfähigkeit bei 25°C	FR/f	F5	DIN EN 27888 (C8): 1993-11	5	μS/cm	27
Anionen aus dem 10:1-S	chüttelelı	ıat nad	ch DIN EN 12457-4:	2003-01		
Chlorid (CI)	FR/f	F5	DIN EN ISO 10304-1 (D20): 2009-07	1,0	mg/l	1,4
Sulfat (SO4)	FR/f	F5	DIN EN ISO 10304-1 (D20): 2009-07	1,0	mg/l	3,7
Cyanide, gesamt	FR/f	F5	DIN EN ISO 14403-2: 2012-10	0,005	mg/l	< 0,005
Elemente aus dem 10:1-	Schüttele	luat na	ach DIN EN 12457-4	: 2003-01		
Arsen (As)	FR/f	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	0,002
Blei (Pb)	FR/f	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001
Cadmium (Cd)	FR/f	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,0003	mg/l	< 0,0003
Chrom (Cr)	FR/f	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001
Kupfer (Cu)	FR/f	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,005	mg/l	< 0,005
Nickel (Ni)	FR/f	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	0,002
Quecksilber (Hg)	FR/f	F5	DIN EN ISO 12846 (E12): 2012-08	0,0002	mg/l	< 0,0002
Zink (Zn)	FR/f	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,01	mg/l	< 0,01
Org. Summenparameter	r aus dem	10:1-8	Schütteleluat nach I	DIN EN 12457	-4: 2003-01	
Phenolindex, wasserdampfflüchtig	FR/f	F5	DIN EN ISO 14402 (H37) 1999-12	T	mg/l	< 0,01

Erläuterungen

BG - Bestimmungsgrenze

Lab. - Kürzel des durchführenden Labors

Akkr. - Akkreditierungskürzel des Prüflabors

X - durchgeführt

Kommentare zu Ergebnissen

Die mit FR gekennzeichneten Parameter wurden von der Eurofins Umwelt Ost GmbH (Lindenstraße 11, Gewerbegebiet Freiberg Ost, Bobritzsch-Hilbersdorf) analysiert. Die Bestimmung der mit F5 gekennzeichneten Parameter ist nach DIN EN ISO/IEC 17025:2018 DAkkS D-PL-14081-01-00 akkreditiert.

/f - Die Analyse des Parameters erfolgte in Fremdvergabe.

[#] Heizblock-Aufschluss außer bei Untersuchungen im gesetzlich geregelten Bereich.

¹⁾ nicht berechenbar